Octopus visual system: a functional MRI model for detecting neuronal electric currents without a blood-oxygen-level-dependent confound.

نویسندگان

  • Xia Jiang
  • Hanbing Lu
  • Shuichi Shigeno
  • Li-Hai Tan
  • Yihong Yang
  • Clifton W Ragsdale
  • Jia-Hong Gao
چکیده

PURPOSE Despite the efforts that have been devoted to detecting the transient magnetic fields generated by neuronal firing, the conclusion that a functionally relevant signal can be measured with MRI is still controversial. For human studies of neuronal current MRI (nc-MRI), the blood-oxygen-level-dependent (BOLD) effect remains an irresolvable confound. For tissue studies where hemoglobin is removed, natural sensory stimulation is not possible. This study investigates the feasibility of detecting a physiologically induced nc-MRI signal in vivo in a BOLD-free environment. METHODS The cephalopod mollusc Octopus bimaculoides has vertebrate-like eyes, large optic lobes (OLs), and blood that does not contain hemoglobin. Visually evoked potentials were measured in the octopus retina and OL by electroretinogram and local field potential. nc-MRI scans were conducted at 9.4 Tesla to capture these activities. RESULTS Electrophysiological recording detected strong responses in the retina and OL in vivo; however, nc-MRI failed to demonstrate any statistically significant signal change with a detection threshold of 0.2° for phase and 0.2% for magnitude. Experiments in a dissected eye-OL preparation yielded similar results. CONCLUSION These findings in a large hemoglobin-free nervous system suggest that sensory evoked neuronal magnetic fields are too weak for direct detection with current MRI technology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Repeatability of Detecting Visual Cortex Activity in Functional Magnetic Resonance Imaging

Introduction As functional magnetic resonance imaging (fMRI) is too expensive and time consuming, its frequent implementation is difficult. The aim of this study is to evaluate repeatability of detecting visual cortex activity in fMRI. Materials and Methods In this study, 15 normal volunteers (10 female, 5 male; Mean age±SD: 24.7±3.8 years) attended. Functional magnetic resonance images were ob...

متن کامل

Method for functional MRI mapping of nonlinear response.

Nonlinear systems analysis combining blood oxygen level dependent (BOLD), functional magnetic resonance imaging (fMRI) and m-sequence stimulation paradigms are proposed as a new method for exploring neuronal responses and interactions. Previous studies of electrical activity in the human visual cortex have observed significant nonlinearities of task-induced activity with temporal dynamics on a ...

متن کامل

Absolute Beginner’s Guide to functional MRI

Introduction Over the past fifteen or twenty years functional MRI has extended the boundaries of brain mapping from basic neuroscientific research into more sophisticated applications in neuroscience. More recently fMRI has begun to find further application in clinical science (e.g. neurological or psychiatric disorders) and in drug discovery. Functional MRI (fMRI) detects hemodynamic changes a...

متن کامل

Hunting for neuronal currents: absence of rapid MRI signal changes during visual-evoked response.

While recent reports have advocated the use of magnetic resonance imaging (MRI) to detect the effects of neuronal currents associated with human brain activity, only preliminary experimental data have been presented so far to demonstrate the feasibility of the method. Furthermore, it has not been adequately demonstrated that (1) MRI can separate neuronal current (NC) effects from other effects ...

متن کامل

Receptive Field Encoding Model for Dynamic Natural Vision

Introduction: Encoding models are used to predict human brain activity in response to sensory stimuli. The purpose of these models is to explain how sensory information represent in the brain. Convolutional neural networks trained by images are capable of encoding magnetic resonance imaging data of humans viewing natural images. Considering the hemodynamic response function, these networks are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 72 5  شماره 

صفحات  -

تاریخ انتشار 2014